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Abstract
We derive explicit analytical expressions for the ground state excitonic polaron
(energy, effective mass) using the fractional-dimensional space formalism. Our
results are shown to provide a wider overview of the character of the excitonic
polaron than the analysis performed using integral dimensions only. We include
a derivation of the energy difference between the 1s and 2s states as well as the
phonon Lamb shift (energy difference between the 2p and 2s states) in simple
analytical forms. Our results compare well with experimental data and earlier
theoretical estimates for a variety of different material systems. We extend the
fractional-dimensional model to analyse excitonic polarons in coupled double
quantum wells and quantum disc systems.

1. Introduction

The quantum effects of low-dimensional electronic systems have attracted much attention
in recent years. On the experimental side, this trend towards miniaturization is driven by
applications which include electronic devices based on parallel and perpendicular transport,
optical devices [1], quantum computation, and quantum information [2]. On the theoretical
side, there are efforts to improve the understanding of many phenomena in these restricted
geometries [3, 4], even though significant development has been achieved in experimental
techniques such as MBE growth and synthesis and optical characterization of quantum wells
(QWs) and superlattices.

The polaron problem, first initiated by Landau [5], has since then been studied
extensively [6–8] and has provided an exemplary system for testing new non-perturbative
methods [9]. It has also been extended to investigate the properties of other systems like
bipolarons [10] and excitonic polarons [8, 11–15]. Our aim in this paper is to simplify the
large computational efforts usually demanded within the standard methods, in order to study
the properties of excitonic polarons in a simple, accurate, and comprehensive physical model.
The model is based on the fractional-dimensional space approach [16, 17], a formalism that
provides an elegant short path to tackling the geometrical complexities of low-dimensional
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systems. Using this technique, we are able to provide a clear physical insight into the properties
of the excitonic polaron. We also extend the proposed theoretical treatment to study the energy
difference between the 1s and 2s as well as between 2p and 2s states (phonon Lamb shift) in
QWs and excitonic properties in coupled double quantum wells and quantum disc systems.

Even though non-integer dimensions are not easily conceivable,the fractional-dimensional
space approach has introduced a new, alternative and powerful way for calculating exciton
binding energies in quantum wells [17–21] which otherwise have appeared unmanageable by
conventional approaches unless numerical calculations are performed [22]. In this scheme,
the real confined ‘exciton + quantum well’, ‘exciton + phonon + quantum well’ or ‘exciton
+ electric (magnetic) field + quantum well’ system is mapped onto an effective fractional-
dimensional space in which the composite exciton system behaves in an unconfined manner
and in which the fractional dimension is essentially related to the degree of confinement of the
actual system. Such an approach introduces simplicity and utility and has since been used in
the investigation of several important processes in QWs such as Pauli blocking effects [23],
impurity and donor states [24, 25], excitonic characteristics in magnetic fields [26, 27],
Stark effects in weak electric fields [28], modelling of refractive index [29], exciton–
exciton interaction [30], polarons [31], exciton linewidth properties [32], optical effects in
a microcavity [33], and coherent states [34]. These studies have highlighted the useful and
important role of the dimensionality (from now on denoted by α) which interpolates from 2 in
an exact two-dimensional system (e.g., infinite potential quantum well with zero well width)
to 3 in an exact three-dimensional system (e.g., infinitely wide quantum well). In this regard,
the fractional-dimensional space approach has provided a comprehensive understanding of
physical properties in low-dimensional systems.

The paper is organized as follows. In section 2, we present the theory needed to evaluate
the energy of the excitonic polaron within the framework of the fractional-dimensional space
approach. Analytical expressions of the excitonic polaron corrections (energy, effective mass)
are derived in section 3, and the corresponding expression for the binding energy of an exciton
interacting with phonons is evaluated in section 4. In section 5, we extend the theory developed
in section 2 to obtain analytical expressions for the energy difference between the 1s and 2s
excitonic polaron states as well as for the corresponding 2p–2s energy difference (phonon Lamb
shift). In section 6, we perform a comparative study of our fractional-dimensional results with
available experimental data and other theoretical estimates for a variety of different material
systems. In sections 7 and 8 we extend the calculations to study the properties of excitonic
polarons in coupled double quantum wells and quantum disc systems, respectively. Finally,
conclusions are summarized in section 9.

2. Ground state of the excitonic polaron

One of the difficulties in solving the problem of exciton–phonon interaction is that the
Hamiltonian consisting of exciton, phonon and exciton–phonon interaction energy operators
is not diagonal, either in k-space or in real crystal space. Approximate methods are generally
used [6] to solve the problem. If the exciton–phonon interaction is weak enough, perturbation
theory can be used to obtain the energy eigenvalues and eigenfunctions of an exciton interacting
with phonons. Another technique involves diagonalization of the Hamiltonian as best as
possible and then the remaining off-diagonal terms are treated as perturbations. We will adopt
the second method in the present section.

The Hamiltonian ĤT that describes a Wannier exciton interacting with phonons in a
fractional-dimensional space (α-D space) consists of the exciton energy operator Ĥ αD

ex , the
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phonon energy operator Ĥph, and the exciton–phonon interaction energy operator H opαD
ex−ph:

ĤT = Ĥ αD
ex + Ĥph + Ĥ opαD

ex−ph, (1)

where the superscript αD refers to the exciton in a space characterized by the fractional
dimension α and op specifies that in the present work we consider exciton interaction with
optical phonons only. Each term of equation (1) is defined as follows:

Ĥ αD
ex =

∑
K,ν

Eex
ν (K)B

†
K,νBK,ν, (2)

where the exciton energy is determined by

Eex
ν (K) = EαD

g +
h̄2K2

2M∗
ex

− Ry(
ν + α−3

2

)2 , (3)

and EαD
g is the fractional-dimensional band gap, K denotes the exciton pseudo-wavevector,

M∗
ex represents the effective exciton mass which is assumed to be isotropic in the fractional-

dimensional space, ν = 1, 2, . . . is the principal quantum number of the exciton internal state,
B†

K,ν and BK,ν are the excitonic creation and annihilation operators, respectively, and Ry is the
effective Rydberg. It is to be noted that the last term in equation (3) represents the binding
energy of a fractional-dimensional exciton [18] without taking account of the interaction with
phonons. We remark that the fractional-dimensional band gap EαD

g corresponds to the effective
fractional-dimensional environment in which the excitonic polaron remains in an unconfined
fashion. The effective fractional-dimensional system is then used to map the real confined
excitonic polaron system. Consequently, for practical purposes, and in order to guarantee the
mapping between both the real and the effective systems, the fractional-dimensional band gap
EαD

g has to be renormalized to an appropriate value. For the case of QWs it has been shown
that EαD

g = Ec + Ev + E3D
g (see [21]), E3D

g being the usual (three-dimensional) bulk gap of
the actual system and Ev (Ec) the confining (positive) energy of the top (bottom) of the first
valence (conduction) subband.

Ĥph is the optical phonon energy operator given by

Ĥph =
∑

q

h̄ωqb†
qbq, (4)

where, for simplification, we have omitted the zero point energy term.
We define the α-dimensional exciton–phonon interaction involving longitudinal optical

phonons by the Fröhlich type Hamiltonian [32]:

H opαD
ex−ph =

∑
K,q,λ,ν

V α
λ,ν(q)B

†
K+q,νBK,λ(bq + b†

q) (5)

where q represents the phonon wave pseudovector, λ and ν denote internal quantum numbers
of the exciton states, and bq and b†

q refer to the phonon annihilation and creation operators,
respectively. It is to be noted that the use of pseudo-wavevectors (K and q) and hence a k-
space formalism in a fractional-dimensional space is well documented in the literature (see [35]
and references therein). Unlike in conventional approaches, these pseudovector states occupy
the space of non-integer dimensionality. Accordingly, the summation over K and q can be
converted to an integral over positive |K| or |q|, as will be shown in section 3.

The matrix element V α
λ,ν(q) that appears in equation (5) is given by

V α
λ,ν(q) =

∫
αD

drψ†
ν (r)ψλ(r)V

α
q

[
exp(−iγeq · re)− exp(iγhq · rh)

]
, (6)
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where

γe = m∗
e

(m∗
e + m∗

h)
, γh = m∗

h

(m∗
e + m∗

h)
, (7)

and

|V α
q |2 = �

[
(α−1)

2

]
(4π)(α−1)/2e2h̄ω

2	αqα−1

(
1

ε∞
− 1

ε0

)
. (8)

In the equations above, ε∞ and ε0 are the high- and low-frequency values of the dielectric
function of the well material, m∗

e and m∗
h are the respective electron and hole effective masses,

and ω is the frequency of the LO phonons. In equation (8), we have neglected the LO-phonon
dispersion by assuming that h̄ωq ≈ h̄ω. 	α in equation (8) is the fractional-dimensional
volume of the crystal to which Born–Von Karman periodicity conditions are applied. The
form of V α

q as given in equation (8) was derived in [31] by using the fractional-dimensional
Fourier transform [16] of the Coulomb-like potential that basically characterizes the electron
(or hole) interaction with the lattice. It is to be noted that equation (8) reduces to the well
established forms in both the exact 2D and 3D limits.

For λ = ν = 1s, the matrix element V α
1s,1s(q) in equation (6) is evaluated using the 1s

state of an exciton in an αD space:

ψ1s(r) = F(α) exp

[
− 2

α − 1

r

aB

]
. (9)

One then arrives at the following expression [32]:

V α
1s,1s(q) =

(
�

[
(α−1)

2

]
(4π)(α−1)/2e2h̄ω

2	αqα−1

)1/2 (
1

ε∞
− 1

ε0

)1/2

×
[

1

(1 + β2
h (α))

(α+1)/2
− 1

(1 + β2
e (α))

(α+1)/2

]
, (10)

where

βh(α) = γh|q|
2

(
α − 1

2

)
aB, βe(α) = γe|q|

2

(
α − 1

2

)
aB, (11)

and aB is the three-dimensional Bohr radius of the exciton. The term F(α) in equation (9)
can be easily obtained from the normalization of the 1s exciton wavefunction [17]. In what
follows we omit, for brevity, the internal quantum numbers (λ = ν = 1 s) in the labels of the
excitonic creation and annihilation operators.

One can notice that the interaction operator H op αD
ex−ph in equation (5) is not diagonal

with respect to exciton or phonon operators and, consequently, the total Hamiltonian ĤT

in equation (1) is also non-diagonal. We will therefore diagonalize ĤT, as best as possible, by
applying the unitary transformation [36] Uex:

Uex = eiS, (12)

where S is given by

S =
∑
K,q

B†
K+q BK

(
f ∗
ex(K,q)b†

−q + fex(K,q)bq
)
, (13)

and the function fex(K,q) is determined through the process of diagonalization. The series of
expansion needed to transform the Hamiltonian can be written as

U−1
ex ĤUex = Ĥ0 + (i[Ĥ0, S] ± Ĥ op Q2D

ex−ph ) + i
[(

1
2 i[Ĥ0, S] ± Ĥ op Q2D

ex−ph

)
, S

] ± · · · , (14)
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where Ĥ0 = Ĥ αD
ex + Ĥph. Using equations (2), (4), (5), (12) and (13) in (14), the function fex

is found to be

fex(K,q) = V α
1s,1s(q)

Eex
1s (K + q)− Eex

1s (K)− h̄ω
, (15)

with a similar expression for f ∗
ex(K,q). The transformed Hamiltonian Ĥ T = U−1

ex ĤUex is
thus obtained as

ĤT = Ĥ αD
ex + Ĥph + Ĥ T op αD

ex−ph + Ĥ ′
I , (16)

where Ĥ T op αD
ex−ph is given by

Ĥ T op αD
ex−ph =

∑
K

∑
K′,q

{
|V α

1s,1s(q)|2
[

1

Eex
1s (K + q)− Eex

1s (K)− h̄ω

− 1

Eex
1s (K + q)− Eex

1s (K) + h̄ω

]
B†

K BK+q B†
K′+q BK′

}
. (17)

It is worth noting that the transformed Hamiltonian in equation (16), the function fex(K,q)
(see equation (15)), has been obtained such that the non-diagonalized term Ĥ ′

I is expected
to contribute with a small energy correction to the excitonic polaron even in the intermediate
coupling regime. The neglect of this term in the weak and intermediate coupling regimes is
well justified, as will be shown in section 6, where comparisons are made with experimental
data and earlier theoretical estimates for a variety of different material systems.

The state vector of an α-dimensional excitonic polaron can be represented by |K; n(q)〉 =
B†

K|0; n(q)〉 (with |0; n(q)〉 = |0〉×|n(q)〉), where |0〉 is the vacuum state vector of excitons and
|n(q)〉 = |nq1 , nq2 , . . .〉 is the α-dimensional optical phonon state pseudovector characterized
by the occupation number nq of phonons with wave pseudovector q. By setting nq = 0, the
ground state of the excitonic polaron is then evaluated as

E1s
ex−pol = 〈n(q),K|U−1

ex Ĥ T op αD
ex−ph Uex|K, n(q)〉

= Eg +
h̄2K
2M∗

ex
− Ry(

1 + α−3
2

)2 − I ex(K) + 〈0; K|Ĥ′
I |K; 0〉, (18)

where

I ex(K) =
∑

q

{
|V α

1s,1s(q)|2
[

1

Eex
1s (K + q)− Eex

1s (K)− h̄ω
− 1

Eex
1s (K + q)− Eex

1s (K) + h̄ω

]}
.

(19)

It can be easily shown that 〈0; K|Ĥ′
I |K; 0〉 = 0 so that the first order contribution of Ĥ ′

I to
the ground state energy is zero, although this may not be true for higher energy states with
non-zero values of nq.

3. Evaluation of Iex(K) in a fractional-dimensional space

The term I ex(K) in equation (19) can be evaluated by transforming the discrete sum over the
phonon wave pseudovector q into a spatial integral using the relation

∑
q

−→ 	α

(2π)α
2π(α−1)/2

�[ α−1
2 ]

∫
αD

qα−1(sin θ)α−2 dq dθ. (20)
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Assuming parabolic bands, I ex(K) in equation (19) can be rewritten as

I ex(K) =
∑

q

|V α
1s,1s(q)|2

[
1

h̄2q2

2M∗
ex

− h̄ω + h̄2K·q
M∗

ex

− 1
h̄2q2

2M∗
ex

+ h̄ω + h̄2K·q
M∗

ex

]
. (21)

Equation (21) can be simplified by considering that
(

h̄ω + h̄2q
2

2M∗
ex

)
� h̄2

M∗
ex

K · q for excitons

present near the band edge [37] and using the identity∫ π

0

(sin θ)u

a + b cos θ
dθ =

√
π�[ 1+u

2 ]

a�[1 + u
2 ]

2 F1

(
1

2
, 1, 1 +

u

2
,

b2

a2

)
, (22)

where the hypergeometric function 2 F1(
1
2 , 1, 1+ u

2 , x) ≈ 1+ x
2(1+ u

2 )
for small x . We thus obtain

I ex(K) ≈ I ex
1 + I ex

2 (K) with

I ex
1 = −ηex M1(α, γe, γh)h̄ω (23)

and

I ex
2 =

(
h̄2 K 2

2M∗
ex

)
ηex M2(α, γe, γh), (24)

where M1(α, γe, γh) and M2(α, γe, γh) are functions that will be explicitly determined, and ηex

represents the dimensionless exciton–phonon coupling constant:

ηex =
(

2M∗
exω

h̄

)1/2 e2

2h̄ω

(
1

ε∞
− 1

ε0

)
. (25)

It is worth noting that careful attention has to be given to the evaluation of the integrals
in I ex

1 and I ex
2 (K) due to the divergence which occurs at Eex

1s (K + q) − Eex
1s (K) = h̄ω. A

suitable way to deal with this problem is to separate the region of integration into two sub-
intervals [38] and choose the division to be at the point of divergence. An accurate integral can
thus be obtained as imaginary and divergent terms cancel each other. The following integral
becomes useful when using this method of integration over the region of singularity:∫ k

h
(x2 − a)−1(bx2 + 1)−u dx

= −h

a
F1

(
1

2
; 1, u; 3

2
; h2

a
,−bh2

)
− k

a
F1

(
1

2
; 1, u; 3

2
; k2

a
,−bk2

)
, (26)

where the function F1 represents one of the four hypergeometric functions in two variables
introduced by Appell [39] and defined as

F1(a; b1, b2; c; x, y) =
∞∑

m=0

∞∑
n=0

(a)m+n(b1)m
(b2)n

m!n!(c)m+n
xm yn, (27)

(a)n being the standard Pochhammer symbol (a)n = �(a+n)
�(a) = a(a + 1) · · · (a + n − 1) with

(a)0 = 1.
Accurate numerical values of I ex

1 and I ex
2 (K) can thus be computed with standard packages

that provide direct values of the Appell function F1 for given values of its parameters. However,
in order to obtain M1(α, γe, γh) and M2(α, γe, γh) as explicit analytical functions, we terminate
the series expansion of F1 in y (see equation (27)) at the third term. As 0 � γeγh � 1

4 , this
approximation is valid for

(
aB

4Rex

)
� 1, a condition that is fulfilled by a wide range of materials

commonly used as constituents in nanostructured systems. We then obtain M1(α, γe, γh) and
M2(α, γe, γh) as

M1(α, γe, γh) ≈
√
π�[ α2 − 1

2 ]

2�[ α2 ]
D(α, aB, Rex, γe, γh) (28)
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and

M2(α, γe, γh) ≈
√
π�[ α2 − 1

2 ]

8�[ α2 + 1]
D(α, aB, Rex, γe, γh), (29)

where

D(α, aB, Rex, γe, γh) =
[

1 − 1

C1+α
+

(
1 + α

2(α − 1)

) (
aB

4Rex

)2 (
γ 2

e + γ 2
h − 2C−2−αµ

)]
, (30)

µ = γeγh, C = 1
2µ − 1, and Rex =

√
h̄

2M∗
exω

. One can notice that in the limit me = mh (i.e.,

γe = γh) the centre of mass and the centre of charge coincide. Consequently, the screening
between the electron and hole becomes very effective and the coupling with the phonons is
minimal. In agreement with this situation, one can easily verify that when γe = γh both M1 and
M2 vanish, as expected. Another interesting limiting case occurs when either the electron or
the hole mass vanishes and the terms associated with aB are neglected. In that case, as one can
expect, the expressions for M1 and M2 in equations (28) and (29) reduce to the corresponding
ones referred to the single polaron case [31].

Within the framework of our model the ground state energy of the excitonic polaron can
then be written as

E1s
ex−pol = h̄2K2

2M∗
ex

[
1 − ηex M2(α, γe, γh)

] − 4Ry

(α − 1)2
+ EαD

g − ηexh̄ωM1(α, γe, γh), (31)

where the first and last terms in equation (31) represent the kinetic energy and the energy gap
shift, respectively. From equation (31) it follows that the effective mass of an α-dimensional
excitonic polaron is given by M∗

p = M∗
ex

1−ηex M2(α,γe,γh)
.

As can be appreciated from equations (28)–(31), the ground state energy of the excitonic
polaron is an explicit function of σ = me/mh (the ratio of electron to hole mass), the LO-
phonon energy, the ratio of the exciton Bohr radius to the excitonic polaron radius (aB/Rex),
the exciton coupling constant (ηex), and the dimensionality α. In order to gain some physical
insight into the dependence of the ground state energy E1s

ex−pol on the various parameters, the
energy shift dependence on σ in the exact 2D and 3D limits is displayed in figure 1 for two
values of aB/Rex (1 and 2). Figure 1 shows that, for a given system with given σ and aB/Rex,
the energy shift is greater in the 2D case than in the 3D case. As the energy shift is, basically, a
negative contribution (see equation (31)), the behaviour displayed in figure 1 tends to contribute
to the increasing of the total energy when the dimension increases, a general trend that has
also been shown to occur in other fractional-dimensional systems [34]. On the other hand, for
a given σ and α, the system with ratio aB/Rex = 2 has a greater energy shift than the one with
aB/Rex = 1 due to the fact that in the former case the coupling with the phonons (we recall that
aB/Rex ∼ h̄ω/Ry) is stronger. We note that a similar behaviour was found by Adamowski et al
[40] by using a strict 3D exciton model. It is remarkable, however, that the sensitivity of this
effect depends on the dimensionality. Thus, for α = 2 the difference between the curves with
aB/Rex = 1 and aB/Rex = 2 appears to be enhanced with respect to the corresponding ones
in the 3D case. It is also appreciable in figure 1 that at σ = 1, as was previously discussed,
the centre of mass and the centre of charge coincide, leading to a suppression of the coupling
with the phonons. However, as σ decreases and me starts to differ from mh, the centre of mass
displaces from the centre of charge, the screening between the electron and hole becomes less
effective, and the coupling with the phonons rapidly increases. Thus, roughly speaking (notice
the presence of a maximum at σ �= 0 in some of the curves), the energy shift increases as
σ decreases and reaches the bound polaron limit at σ = 0. The presence of a maximum at
σ �= 0 in some of the curves suggests the existence of an optimal configuration for which the
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Figure 1. Energy shift (the last term in equation (31)) as a function of σ = m∗
e/m∗

h for different
values of aB/Rex and α.

coupling with the phonons becomes maximal. The study of the origin of such a configuration
requires a rigorous approach involving a great variety of phonon modes and the incorporation
of a realistic multisubband description of the electron–hole Coulomb interaction. As this is
not a trivial procedure, the nature of optimal configuration for which the coupling with the
phonons becomes maximal has not been explored in this work.

In figure 2, the mass correction �M = (M∗
p −M∗

ex)

M∗
ex

× 100 is shown as a function of the
dimensionality α and for different values of σ and the ratio aB/Rex. In obtaining figure 2 we
have used ηex = 0.1 without loss of much generality. The figure shows a gradual decrease
in the mass correction with α. As for the energy shift, in the case of the mass correction the
difference between the curves with different aB/Rex also increases when decreasing σ and/or
α. The explanations concerning this behaviour and the other features shown in figure 2 are
quite similar to that given in the discussion of the results displayed in figure 1 and we therefore
omit them.

4. Excitonic polaron binding energy

The excitonic polaron binding energy can be calculated by subtracting the self-energy of
the hole and electron polarons [31] from the ground state energy of the excitonic polaron
(equation (31)). We then obtain the excitonic polaron binding energy as

Eb(α) =
√
π

2
h̄ω

[
�[ αe

2 − 1
2 ]

�[ αe
2 ]

ηe +
�[ αh

2 − 1
2 ]

�[ αh
2 ]

ηh

]
− ηexh̄ωM1(α, γe, γh)− 4Ry

(α − 1)2
, (32)

where αe (αh) is the dimensionality associated with the confined electron (hole) polaron and ηe

(ηh) is the electron (hole) coupling constant which is evaluated by replacing the exciton mass
by the electron (hole) mass in the expression used for ηex in equation (25).

It is important to use an appropriate method for evaluating α as it is crucial to compute
Eb(α) in equation (32). In the absence of interaction with phonons, the dimensional parameter
that characterizes the degree of ‘compression’ of the confined exciton can be calculated in



Excitonic polarons in confined systems 3989

2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
Dimensionality, α

0.5

1.8

3.1

4.4

5.7

M
as

s 
co

rr
ec

ti
o

n
 

me/mh = 0.1

me/mh = 0.5

me/mh = 0.7

a
B
 / R

ex
 = 1

a
B
 / R

ex
 = 2

Figure 2. Mass correction �M = (M∗
p −M∗

ex )

M∗
ex
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different ways (see for instance [18, 20, 21]). The easiest way to evaluate α is by using the
ansatz [18]

α = 3 − exp

(
− Lw

2aB

)
, (33)

where Lw represents the well width. The equation above is valid for infinite depth QWs, and
therefore for practical purposes (real QWs have finite potential barriers) it is appropriate for
large QWs only. At smaller well widths (Lc < Lw < 2aB, with Lc a certain critical value)
some improvements can be made by replacing aB by an effective exciton radius [41]:

a∗
B =

(
a2

BLw

2

)1/3

. (34)

However, in the range Lw < Lc, where tunnelling processes become important, equations (33)
and (34) cannot provide accurate estimates for α because they do not take into account the
spreading of the electron and hole wavefunctions into the barrier regions. In order to incorporate
these effects, a generalized version of equation (33) was proposed in [18]. Although simple, the
generalized expression requires the introduction of a large set of ansatz and a priori definitions
that can be even larger if one tries to incorporate the exciton–phonon interaction effects. In
order to avoid the use of heuristic definitions, we use a microscopic approach [20] that takes
into account the penetration of the carriers into the barriers and incorporates the continuous
interpolation of the material parameters from their values in the well region (at large well
widths) to their values in the barrier regions (at very small well widths). Using the microscopic
approach, which is phenomenological rather than heuristic in nature, accurate values of α can
be computed through the expression

α = 2 +

[
1 +

(
(1 − ηex M2(α, γe, γh))aB

Z

)2
]−1/3

. (35)
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The quantity Z can be calculated analytically. It gives a measure of the extension of the
electron–hole pair and is computed by just using the electron and hole envelope wavefunctions
(for more details see [20]). It is worth noting that in equation (35) we have generalized the
expression originally proposed for the case of confined excitons [20] by introducing the effects
of the exciton–phonon interaction in a renormalized Bohr radius (1−ηex M2(α, γe, γh))aB that
now replaces aB.

Although, in principle, the appropriate values of α have to be found by solving the
transcendental equation (35) numerically (and this does not involve much effort), one can,
however, obtain a good estimation of the dimensionality in a purely analytical way by
computing a first approximation of α from equations (33) (and equation (34) for narrow QWs).
The final value of the dimensionality is then obtained through equation (35), but using the first
approximation of α in the evaluation of the term M2(α, γe, γh).

The dimensionalities associated with the electron and hole polarons can be calculated as
in [31]. For infinite QWs, expressions analogous to equation (33) can be used:

αe = 3 − exp

(
− Lw

2Re

)
, αh = 3 − exp

(
− Lw

2Rh

)
, (36)

where Re (Rh) is the electron (hole) polaron radius computed through the substitution of M∗
ex

by the electron (hole) mass in the expression used for Rex. For more accurate estimates of
αe and αh, effects of the carrier penetration into the barrier regions can be incorporated by
introducing an effective well width and main values of the corresponding well and barrier
material parameters [31].

It is to be noted that our technique of mapping the excitonic polaron from the real
system to the effective system of a fractional space refers to the physical quantities we
are interested in, i.e., the excitonic polaron energy and mass. The existence of such a
mapping for the case of exciton or impurities binding energies has been mathematically
demonstrated (see [21, 24, 25, 27]) where the transformations lead to unique and real solutions
for the dimensional parameter. However, the question arises as to how best to determine the
dimensional parameter that guarantees a similar mapping for excitonic polarons. As the exact
transformation for the excitonic polaron is unknown due to the unavailability of a precise
and unique mapping procedure, we refer to the fractional-dimensional space approach as
an approximation. In this regard, equation (35) provides an approximate generalization to
equation (33), and its reliability can be easily validated by comparison with known experimental
theoretical estimates (see section 6).

5. Energy difference between different excitonic polaron states

A quantity that can be of interest not only from the theoretical but also from the experimental
point of view is the energy difference between excitonic polaron states. In particular the energy
difference between the 1s and 2s excitonic polaron states is of special interest because it gives
information about the optical properties of the system and is a quantity that can be measured
in the experiments in a direct way.

Within the framework of the theory developed in section 2, the energy difference between
the 1s and 2s levels of the excitonic polaron can be easily determined. The procedure for
obtaining the energy of the excited states is quite similar to that used for the case of the ground
state. For the 2s state we assume the fractional-dimensional exciton wavefunction [16, 32]:

ψ2s(r) = G2s(α)

(
α2 − 1

4
− r

aB

)
exp

[
− 2

α + 1

r

aB

]
, (37)
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where the factor G2s can be easily determined from the corresponding normalization condi-
tion [16, 32]. Equation (37) is then used to derive an expression for the matrix element V α

2s,2s(q)

and a transformed Hamiltonian (similar to Ĥ T in equation (16)) as was done in the case of the
1s state of the excitonic polaron. After some mathematical manipulations we finally obtain

E1s
ex−pol − E2s

ex−pol = 16Ry

(1 − ηex M(α))

α

(α2 − 1)2

+ 16ηex
R2

y

h̄ω

1

(1 − ηex M(α))2

[
3

8(α − 1)4
− 1

(α + 1)4

]
, (38)

where M(α) = �[ α2 − 1
2 ]

8�[ α2 +1] . We remark that in obtaining equation (38) we have considered that

both the 1s and 2s states are characterized by the same value of the dimensionality. In practice,
however, different states are not strictly characterized by the same dimensionality. As the
dimensionality constitutes a measure of the degree of compression of the exciton wavefunc-
tion, a variation of the well width or in the height of the barriers will induce changes in the
confinement and, consequently, a variation in the value of the dimensionality. In a similar way,
as different states posses different geometries and extensions, one can expect that they will
feel the confinement in different manners [21]. Therefore, what happens is, strictly speaking,
that each state is characterized by a particular value of the dimensionality [21]. Nevertheless,
for the case of the energy difference between the 1s and 2s states one still can obtain a good
estimation of E1s

ex−pol − E2s
ex−pol by assuming the same value of α for both states [18]. The

results computed by using equation (38) will be discussed in the next section.
Another quantity that can be of general interest is the so-called phonon Lamb shift (i.e.,

the enhancement of the excitonic polaron energy of the excited 2s state with respect to the
2p state [42]). For the computation of the matrix element V α

2p,2p(q) we use the fractional-
dimensional wavefunction corresponding to the 2p exciton state [16, 32]:

ψ2p(r) = G2p(α)
r

aB
exp

[
− 2

α + 1

r

aB

]
cos θ, (39)

where G2p(α) is a normalization factor [16, 32]. After some mathematical manipulations we
finally obtain an expression for the Lamb shift of the excitonic polaron:

E2p
ex−pol − E2s

ex−pol = 64ηex

5(α + 1)4
R2

y

h̄ω

1

(1 − ηex M(α))2
. (40)

In figure 3 we have plotted the phonon Lamb shift as a function of the dimensionality α
for different values of the coupling constant ηex = 0.5, 0.7 and 0.9. We have assumed
R2

y/h̄ω ≈ 1 meV in order to gain some insight into the dependence of the Lamb shift on α
and ηex. The figure shows that the Lamb shift decreases as α increases, and that the rate of
this trend is faster at higher values of the exciton coupling constant. One can also appreciate
from figure 3 that the smaller the exciton coupling constant the smaller the phonon Lamb shift.
Thus, for instance, in the case of GaAs/Ga1−x AlxAs QWs, where ηex � 0.1, the Lamb shift
becomes too small (even in the 2D limit) to be detected experimentally by current instruments.

Finally, we want to remark that in order to obtain analytical solutions (see equations (38)
and (40)), we have assumed an exciton of large radius (�100 Å) and binding energy that is
less than the phonon energy, i.e., Ry � h̄ω. Details of calculations of a thorough study, where
a wider range of materials can be considered, are rather lengthy and will be given elsewhere.

6. Comparison with experimental results

In figure 4 we show our fractional-dimensional results (solid curves) for the excitonic polaron
binding energy as a function of the well width and for different values of the Cd concentration x
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Figure 4. Well width dependence of the excitonic polaron binding energy in ZnSe/Zn1−x Cdx Se
QWs. Solid curves represent the results of our calculations performed through equations (32), (35),
and (36) and assuming the same material parameters as in [14] (for x = 0.3) and [15] (for x = 0.2,
0.1). Experimental results from [14] and [15] are denoted by solid symbols and the variational
calculations by Nardis et al [14] and by Zheng et al [13] are denoted by dashed–dotted and dotted
curves, respectively.

(0.1, 0.2 and 0.3) in ZnSe/Zn1−x CdxSe QWs. Our results were computed using equations (32),
(35) and (36) and material parameters as defined by Nardis et al [14] (for the case x = 0.3)
and Cingolani et al [15] (for the cases x = 0.2, 0.1). Theoretical results obtained by Zheng
et al [13] and by Nardis et al [14] (dotted and dashed–dotted curves, respectively) as well
as experimental results (solid symbols) reported by Nardis et al [14] and Cingolani et al
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Table 1. Comparison of exciton binding energies (meV) at α = 2 (exact 2D) and α = 3 (bulk).

α = 2

Equation (32) Reference [47] Equation (32) Expt.

CdTe 46.2 45.96 11.5 11b

CdSa 140.7 — 27 30b

CuCl 655 656.3 140 190c

TlCla 74.8 — 12 11d

TlBra 45 — 9 6d

a Exact 2D binding energies are not available for CdS, TlCl and TlBr in [47].
b Experimental result from [48].
c Experimental result from [49].
d Experimental result from [50].

[15] are also included in the figure. The good overall agreement between our results and the
experimental ones is quite apparent, especially in the region of strong confinement. As was
mentioned in section 2, we expect our approximation to be valid in the weak to intermediate
coupling regimes. Therefore, as the phonon coupling becomes strong the application of the
proposed approach can be, in principle, questionable and its accuracy decreases. This effect
is, however, somewhat minimized when considering systems with large Rydberg and strong
confinement. In the strong confinement regime the exciton binding energy (without phonon
effects) increases very quickly in comparison with the polaronic corrections and for materials
with large Rydberg the exciton binding energy becomes (without phonon effects) considerably
large, so that in that case one can expect that even the strong phonon coupling regime could
be treated within perturbation theory. For the case of weak confinement and strong phonon
coupling, however, this situation is no longer true, and the accuracy of our calculations rapidly
decreases, as can be clearly seen from figure 4 in the region of large well widths or by comparing
the results shown in table 1 for α = 2 (strong confinement) and α = 3 (no confinement).

As expected, the spreading of the electron and hole wavefunctions into the barrier regions
at very small well widths (Lw � 30 Å) results in a peak in the binding energy at some critical
well width at which the confinement is maximal and the dimensionality α reaches its minimal
value. The figure also shows that as the Cd concentration x increases the excitonic polaron
binding energy increases. This behaviour is easily explained by the fact that a deeper well
(at larger x values) confines the exciton more efficiently, the exciton dimensionality becomes
smaller, and the binding turns stronger.

The fractional-dimensional excitonic polaron binding energy and the energy difference
between the 1s and 2s excitonic polaron states as functions of the GaAs/Ga0.7Al0.3As QW
width are represented by solid lines in figures 5 and 6, respectively. In both cases the
corresponding dimensionalities α, αe and αh needed in the evaluation of equations (32) and
(38) were computed using equations (35) and (36) and the same material parameters as used
by Oelgart et al [43]. As can be clearly appreciated in figure 5, our theoretical estimates of
the heavy-hole excitonic polaron binding energy are in good agreement with theoretical and
experimental results reported by Oelgart et al [43] and Petrou et al [44]. In figure 6 we have
included, for comparison, experimental values of the energy difference between the 1s and 2s
heavy-hole exciton states obtained by Oelgart et al [43], Dawson et al [45] and Koteles et al
[46]. Again, the overall agreement between our fractional-dimensional results and previously
reported experimental data is quite apparent. It is worth noting that our results displayed in
figure 6 were calculated by approximating the dimensionality α2s that characterizes the 2s
exciton state by the same value of the dimensionality α that characterizes the 1s exciton state,
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Figure 6. Energy difference between the 1s and 2s states of the heavy-hole excitonic polaron
in GaAs/Alx Ga1−x As QWs as a function of the well width. The solid curve corresponds to our
theoretical result evaluated using equations (38) and (35) and the same material parameters as
in [43]. The figure includes experimental results of Oelgart et al [43] (solid circles), Dawson et al
[45] (crosses) and Koteles et al [46] (solid squares).

i.e., we assumed that α2s = α. As was previously discussed in section 5, however, to different
states correspond, strictly speaking, different dimensionalities. Actually, for narrow QWs, as
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Table 2. Material Parameters.

m∗
e m∗

h ε0 ε∞ h̄ω ηe ηh ηex aB (Å) Rpol (Å) Rex (Å) Ry (meV)

CdTea 0.088 0.60 10.3 6.9 20.7 0.364 0.950 1.02 48 46 16.4 9
CdSb 0.18 0.70 9.7 5.2 38 1.59 0.718 1.415 24 24 11 39
CuCla 0.40 3.60 7.4 3.7 27.2 1.911 5.733 6.04 5.2 20 6 178
TlClc 0.31 1.32 37.6 5.1 21.5 5.442 2.4 4.9 50 39 17 13.1
TlBrc 0.19 0.95 35.1 5.4 14.3 5.16 2.1 4.17 46 49 20 9

a First seven parameters taken from [47].
b First five parameters taken from [11].
c First five parameters taken from [50].

the 2s state has a spatial extension that is, in principle, larger than the 1s state extension, it
feels the confinement in a stronger way and is more ‘compressed’ by the QW barrier [21].
Therefore, in the region of narrow QWs α2s < α [21]. On the other hand, taking into account
that the exciton energy increases as the dimension increases (recall that on increasing the
dimensionality, the binding energy decreases, and as it contributes negatively to the total
energy, the total energy increases with the dimension) one can conclude that in the region of
narrow QWs the value of the energy E2s

ex−pol at α is, actually, greater than its corresponding
value atα2s. Consequently, in the narrow wells region the here assumed approximationα2s ≈ α

produces a certain overestimation in our calculation of the energy difference E2s
ex−pol − E1s

ex−pol.
One can then expect that our results in figure 6 can still be improved, especially in the region
of narrow wells, if a more realistic value of α2s is incorporated in our theoretical approach.
However, a better estimation of α2s in a simple way remains a challenge. No heuristic or
macroscopic formulations for the calculation of α2s are yet known, and the generalization of
the systematic method developed in [21] to the case of excitonic polarons is not a trivial task.

The excitonic polaron binding energy evaluated for a variety of materials in the exact 2D
and 3D limits is shown in table 1, together with theoretical and experimental results reported
by other authors. Again, an overall agreement between our results and those reported in [47–
50] can be clearly appreciated. The material parameters we used in evaluating the excitonic
polaron binding energies reported in table 1 are given in table 2. It should be noted that in
table 2, in the cases of CdS, CuCl, TlCl, and TlBr, the corresponding effective Rydbergs were
calculated by using Ry = R∞

y
ε∞

(ε∞−ε0)
+ R0

y
ε0

(ε∞−ε0)
, where R0

y and R∞
y are the Rydberg energies

obtained with ε0 and ε∞, respectively.
It is to be noted that we have applied the fractional-dimensional space formalism within

the framework of a perturbative method which approximates exciton–phononsystems between
the weak to intermediate coupling range quite well. Figure 4 as well as table 1 show good
agreement between our theoretical results and II–VI and I–VII compound systems which are
known not to have weak exciton–phonon coupling. It is interesting to note that the agreement
between experimental and theoretical results is best for excitonic systems where the polaron
radius (Rpol) is of the same order as the exciton Bohr radius (table 2). In fact, the closeness
of the two radii highlights the magnitude of interplay between the electron–hole potential and
electron–phonon interaction [51] and suggests that transitions between the different internal
exciton state will have an influence in its polaronic corrections. However, consideration of such
transitions requires the incorporation of a full three-dimensional multisubband description of
the electron–hole Coulomb interaction. This is not a trivial procedure and is therefore beyond
the scope of this paper. Our approximation, however, allows us to derive completely analytical
results for excitonic polarons which can be generalized to other models like the double quantum
wells and quantum disc systems.
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GaAs/Al0.3Ga0.7As SCDQW at fixed barrier thicknesses (20 and 40 Å).

The good quantitative agreement in table 1 suggests that changes in polaronic corrections
due to the neglect of a component, Ĥ ′

I , of the interaction operator in equation (16) may be
offset by the changes arising due to neglect of transitions involving internal exciton states
mentioned in the previous paragraph. Moreover, the effect of particle–phonon interactions on
the excitonic polaron is expected to introduce changes that are not expected to affect the order
of magnitude of polaron parameters like energy shift and effective mass quantities (as is evident
in figures 4, 5 and table 1). Hence the overall pertinent features of the excitonic polaron system
remains intact in low-dimensional systems in spite of the assumption that we have used in this
work and which appears well justified for a wide range of material systems. The derivation
of analytical solutions, however, remains a challenge for alternative methods [7, 9] known
to be theoretically valid for all ranges of the coupling. This is mainly due to the increased
complexity of mathematically transforming the composite exciton–phonon system into an
effective fractional-dimensional space.

7. Coupled double quantum wells

The problem of excitonic polarons in coupled double quantum wells (CDQW) [52], in which
two coupled wells are separated by a barrier material of width, Lb, is complex. This is mainly
due to the number of matching conditions that have to be considered at the interfaces for both
excitons and phonons. However, the properties of the special case of a symmetric coupled
quantum well (SCDQW) system in which the widths of the adjacent quantum wells are equal
can be studied using the fractional-dimensional space formalism.

In figure 7, we have evaluated the polaronic mass correction�M = (M∗
p −M∗

ex)

M∗
ex

× 100 as a
function of the well width in GaAs/Al0.3Ga0.7As SCDQW at fixed barrier thicknesses (20 and
40 Å). We have used the values of α calculated [52] at various well widths and for fixed barrier
widths (20 and 40 Å), as well as equations (29), (30) and (35) and material parameters as given
in [52]. The effect of the barrier material on the polaronic properties is notable. For narrow
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barrier and wells, there is a higher integrated probability of finding the charge carriers in the
well region, and thus the excitonic polaron wavefunction is mainly localized in the well regions.
Then, as the barrier width increases (i.e., the spatial separation between the wells increases)
the spreading of the excitonic wavefunction and the excitonic radius increases, leading to a
decrease of the confinement effects and, consequently, to a decrease of the polaronic effects
(see the region of narrow wells in figure 7). This trend is, however, reversed as the well width
increases. When the well widths approximate the value of the excitonic radius, the exciton
localizes in one of the wells and is more efficiently confined for wider barriers (see the region
of wide wells in figure 7). It is to be noted that a similar trend as given in figure 7 is observed
for the energy shift (see equation (31)) for various well widths at fixed barrier thickness.

Another feature of interest is the effect of the barrier width on the phonon Lamb shift (see
equation (40)) in coupled double quantum wells. With the inverse dependence of the Lamb shift
on the dimensionality, a plot of the Lamb shift versus the well width at different barrier widths
is predicted to show a crossover at some critical well width, depending on the well and barrier
material parameters (e.g., aluminium concentration x , effective masses of charge carriers).

8. Quantum discs and self-trapping effects

By varying the radius, R, and length, L, of the quantum disc, one can explore properties
in the limiting situations of the excitonic polaron in bulk (R, L � aB), the quantum well
(R � aB, L � aB), the quantum wire (R � aB, L � aB) and the quantum dot (R, L � aB).
Recently, Tong et al [53] performed variational calculations of the exciton binding energies in
the intermediate range of values for R and L in GaAs/Ga0.7Al0.3As material systems. Using an
expression similar to the last term given in equation (3), estimates of the exciton dimensionality
for various values of R and L in GaAs/Al0.3Ga0.7As quantum discs were obtained by Tong
et al [53]. While such a method of estimating exciton dimensionalities is questionable near
the limit of the quantum dot, we considered values outside this range and obtained in figure 8
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the polaronic mass correction as a function of the disc radius, R, at lengths, L = 30, 100
and 300 Å in GaAs/Al0.3Ga0.7As quantum discs. The mass correction values were calculated
using equations (29), (30) and (35) and the material parameters given in [53]. Although the
results shown in figure 8 are consistent with our intuitive expectation, the rapid rise in mass
correction with the decrease in L and R is notable. Under this situation, the excitonic polaron
can be considered as being self-trapped and localized as a result of its interaction with optical
phonons. Using the fact that the excitonic polaron energy, E1s

ex−pol � 0 (equation (31)) when
self-trapping occurs, we estimate, using the material parameters in [53], that exciton trapping
due to optical phonons becomes important for exciton dimensionalities, α � 1.2. Using a
similar approach, we estimate α � 1.8 for self-trapping effects to be observed in CdTe-based
confined systems.

It is interesting to compare our predictions with the results of Jacak et al [54], who recently
evaluated energy shifts of the order of a few millielectronvolts of the exciton interacting
with optical phonons in InAs/GaAs dots. Using equation (31), we have computed energy
shifts in the range 5–10 meV for excitonic polarons in InAs/GaAs based confined systems of
dimensionalities 1.5–2.0. The energy shift increases rapidly beyond 10 meV for α � 1.4,
implying that significant shifts in the excitonic spectrum are expected to be observed in the
true quantum dot region.

9. Conclusions

In summary, we have extended the fractional-dimensional space approach, in which the real
confined heterostructured system is mapped into an effective fractional-dimensional bulk-like
environment, to the study of ground and excited excitonic polaron states in confined systems.
This approach is motivated by the fact that the relative motion of an excitonic polaron cannot
be considered exactly two or three dimensional but possibly of an intermediate dimension
in quantum wells. We have also proposed a microscopic definition which incorporates the
penetration of the electron and hole wavefunctions into the barrier regions and the effects of
the exciton–phonon interaction to determine the effective dimensionality that describes the
degree of compression of the confined excitonic polaron system.

The excitonic polaron problem in nanostructures is a complicated problem that, within
the standard procedures, requires extensive computational efforts. Through the derivation
of analytical results, our results can be of considerable help for experimentalists as well as
theoreticians when rapid and accurate estimates of the excitonic polaron corrections are needed.
Thus, the proposed method does not intend to compete with the standard methods (that are
specially needed if detailed and extensive studies are required) but allows convenient estimation
of the effective mass and the ground state energy of an excitonic polaron in a confined system.
We have also obtained explicit analytical expressions for the energy difference between the
1s and 2s states as well as the Lamb shift corresponding to the confined excitonic polaron.
Calculations performed for a wide variety of material systems show good agreement with
previous theoretical estimates and available experimental measurements, and provide new
theoretical predictions in the coupled double quantum well and quantum disc systems. Even
though we have restricted our model systems to cases where the dimensionality α is less than
3, the work done here can be extended to indirect excitons and impurities located in the central
barrier of a double quantum well where α � 3. In conclusion, our developed formalism
provides a simple, general, and comprehensive picture of the excitonic polarons in confined
systems.
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